Дата проведения занятия 14 ноября 2020 г.

Номер пары: 57.

Группа: 21А

Тема занятия: Основы микроэлектроники.

Срок выполнения 16.11.2020

По запросу преподавателя, фото конспекта скинуть в «В контакте» Орлову А.А. (id421045327) личным сообщением.

Проверка освоения теоретического материала будет произведена выполнением проверочной работы после изучения темы.

Задание.

Используя предложенные справочные материалы (текст после вопросов) и другие источники информации (учебники, интернет), составить конспект по теме занятия.

В конспекте обязательно должны быть выполнены задания и ответы на вопросы:

- 1. Перечислите направления совершенствования характеристик элементной базы и электронной аппаратуры.
- 2. Поясните, что такое интегральная микросхема, как их можно классифицировать?
- 3. Поясните, что такое полупроводниковая интегральная микросхема, кратко опишите ее конструкцию.
- 4. Поясните, что такое гибридная интегральная микросхема, кратко опишите ее конструкцию, входящие в ее состав элементы.
- 5. Дайте краткую характеристику большим интегральным схемам (БИС).

ИНТЕГРАЛЬНЫЕ СХЕМЫ

Современный этап развития радиоэлектроники характеризуется широким внедрением микроэлектроники. Микроэлектроника — отрасль электроники, решающая комплекса физических, помощью сложного химических, схематических, проблему приемов технологических методов И создания высоконадежных, экономичных, миниатюрных блоков и устройств.

Развитие электроники определило совершенствование характеристик элементной базы и аппаратуры в производстве в следующих направлениях:

- уменьшение габаритов и массы (миниатюризация);
- повышение надежности за счет сокращения соединительных линий, совершенствования контактных узлов и взаимного резервирования элементов;
 - уменьшение потребляемой мощности;
- усложнение задач и соответствующих им схемных решений при одновременном удешевлении каждого отдельного элемента.

Существенные изменения в полупроводниковой технике связаны, во-первых, с переходом к интегральным микросхемам (ИМС) и, во-вторых, с переходом к большим интегральным схемам (БИС).

Современная микроэлектроника развивается преимущественно по двумя базовым конструктивно-технологическим направлениям: создание полупроводниковых и гибридных интегральных микросхем.

В соответствии с принятым определением интегральной микросхемой (ИМС) называют микроэлектронное устройство, состоящее из активных элементов (транзисторов, диодов), пассивных элементов (резисторов, конденсаторов, катушек

индуктивностей и др.), которые изготавливаются в едином технологическом процессе, электрически соединены между собой и заключены в общий корпус.

Необходимо иметь в виду, что многим современным ИМС свойственна функциональная незавершенность. Поэтому для того, чтобы микросхема могла полностью выполнять свои функции, к ее выводам подключают внешние навесные элементы, резонансные контуры, дроссели, разделительные или развязывающие конденсаторы и др.

В зависимости от количества элементов, входящих в ИМС, их различают по степеням интеграции: первой степени интеграции—до 10 элементов, второй— от 11 до 100, третьей — от 101 до 1000 и т. д. Их часто обозначают ИМС1, ИМС2, ИМС3.

Схемы, содержащие свыше 1000 элементов, принято называть большими интегральными микросхемами (БИС).

По функциональному назначению ИМС делятся на два больших класса: логические (цифровые) и аналоговые (линейно-импульсные).

Логические ИМС используются в электронных вычислительных машинах, устройствах дискретной обработки информации, системах автоматики. Активные элементы этих схем работают в ключевом режиме.

Аналоговые схемы используются для усилителей сигналов низкой и высокой частот, генераторов и других устройств, где активные элементы работают в линейном режиме или осуществляют нелинейные преобразования входных сигналов.

Перспективным направлением в микроэлектронике является создание функциональных устройств. Эти устройства выполняют определенные функции целой схемы, например выпрямителя, усилителя и т. п.

ПОЛУПРОВОДНИКОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ (ПИМС)

Полупроводниковой ИМС называют микросхему, элементы которой выполнены в объеме или на поверхности полупроводникового материала (подложки).

При изготовлении ПИМС используют те же приемы создания полупроводниковых структур, что и для дискретных полупроводниковых приборов. Отличие состоит лишь в том, что все активные и пассивные элементы ПИМС, созданные в едином кристалле, должны быть электрически изолированы друг от друга и в то же время соединены между собой в соответствии с функциональным назначением микросхемы.

Основой элементов микросхем служит *pn*-переход, который можно формировать различными методами в микрообластях кристалла. Он выполняет роль вентиля (диода), несколько pn-переходов служат транзисторами, тиристорами, фотоприборами и т.д. постоянным напряжением рп-переход обратным выполняет конденсатора, обратное сопротивление рп-перехода играет роль высокоомного резистора. В качестве небольших сопротивлений используют просто участки слаболегированного кристалла кремния, от которых делают контактные выводы. задачу получения катушек индуктивности преодолевают разными конструктивными решениями.

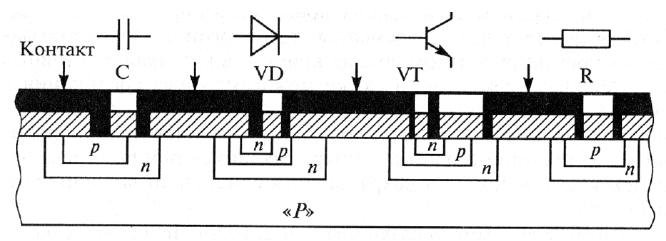


Рис. 1. Элементы полупроводниковой ИМС

ГИБРИДНЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ (ГИМС)

Гибридной ИМС называют микросхему, содержащую диэлектрическое основание (подложку), на поверхности которой выполняются все пассивные элементы (резисторы, конденсаторы) в виде одно- и многослойных пленочных структур с неразрывными пленочными проводниками, а полупроводниковые приборы размещены в виде дискретных навесных элементов в бескорпусном исполнении или сборки.

Активные элементы в гибридных микросхемах обычно имеют лучшие параметры, чем в полупроводниковых, и могут работать при больших напряжениях питания.

ГИМС помещают в герметизированные корпуса с выводами. При изготовлении гибридных схем используют как тонкие (до 1 мкм), так и толстые (до 25 мкм) пленки.

Толстопленочные схемы в многосерийном производстве имеют минимальную стоимость, большую механическую прочность и теплоустойчивость, большую перегрузочную способность элементов, но номинальные значения пассивных элементов нестабильны, плотность монтажа низка и отсутствует возможность подгонки пассивных элементов.

Для тонкопленочных схем характерны большая точность, возможность подгонки номиналов элементов и высокая плотность монтажа.

Любая ГИМС состоит из:

подложки, на которой размещаются пассивные и активные элементы;

пассивной части с планарным (в одной плоскости) расположением пленочных проводников, контактных площадок, резисторов и конденсаторов;

навесных бескорпусных полупроводниковых приборов;

навесных миниатюрных пассивных элементов (конденсаторы больших номиналов, трансформаторы, дроссели);

корпуса для герметизации микросхемы и закрепления ее выводов.

Элементы ГИМС:

Подложка. Составным элементом ГИМС является подложка, которая одновременно выполняет несколько функций: она представляет собой конструктивную основу, на которой формируются и монтируются элементы ГИМС; обеспечивает электрическую изоляцию элементов ГИМС, а также служит теплоотводящим элементом всей конструкции. В качестве материала подложки используют стекло, керамику, пластмассу, ситалл и фотоситалл.

Металлические проводящие пленки выполняют из металлов с высокой проводимостью и используют в ИМС для создания электродов конденсаторов, токопроводов индуктивностей, полосковых волноводов и монтажных проводников контактных площадок.

Металлические резистивные пленки применяются при изготовлении пленочных резисторов. Диэлектрические пленки могут быть использованы в конденсаторах, в многослойных электрических монтажах и защитных покрытиях.

Проводники и контактные площадки. Проводники связывают элементы микросхемы между собой. Контактные площадки предназначены для соединения пайкой или сваркой выводов навесных элементов с микросхемой.

Пленочные проводники и контактные площадки должны иметь: высокую электрическую проводимость; хорошую способность к пайке или сварке; малое переходное сопротивление между проводящим слоем и другими элементами микросхемы; химическую инертность по отношению к другим слоям. Для напыления проводников и контактных площадок используются медь, серебро, золото, алюминий.

Резисторы. Пленочные резисторы изготовляются нанесением на непроводящую подложку через маску (трафарет) узкой резистивной пленки между двумя контактными площадками.

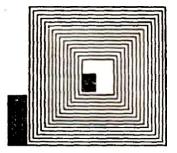
Пленочные резисторы имеют прямоугольную форму. На рис. 2 показаны две их основные конфигурации. Материалом для изготовления пленочных резисторов служит

Резисторы Выбады вывады хром, тантал, нихром, металлокерамика, антикоррозионные благородные металлы и сплавы. Эти материалы обладают высоким электрическим сопротивлением и низким температурным коэффициентом сопротивления.

Рис. 2. Пленочные резисторы.

Пленочные резисторы могут работать при напряжениях до нескольких сотен вольт на частотах до нескольких сотен мегагерц.

Конденсаторы. Пленочные конденсаторы имеют трехслойную структуру: металл—диэлектрик — металл (МДМ) (рис. 3). Такая структура получается трехкратным напылением через соответствующие маски (трафареты). В качестве обкладок применяют металлические пленки алюминия, золота, и т.д. Диэлектриком в



конденсаторах служит моноокись кремния, двуокись кремния, имеющие высокую диэлектрическую проницаемость. Нижняя и верхняя обкладки имеют контактные площадки для включения конденсатора в схему.

Рис. 3. Пленочный конденсатор

Наиболее экономичное использование занимаемой площади обеспечивают квадратные конденсаторы. Современные тонкопленочные конденсаторы позволяют получить емкость от единиц пикофарад до микрофарад на рабочее напряжение до 20 В.

Индуктивности. Индуктивности изготовляют в виде тонкопленочной круговой или прямоугольной спирали с малым шагом из хорошо проводящего материала (рис. 4). Материалы для катушек индуктивности применяют те же, что и для проводников.

Вывод от центрального конца спирали производят обычно по изолирующему слою, нанесенному поверх витков.

Рис. 4. Катушка индуктивности

Плоские спиральные катушки могут иметь индуктивность не более 20 мкГн при добротности не более 50, но в гибридных микросхемах обычно применяют дискретные микрокатушки

индуктивности на ферритовых тороидальных сердечниках.

Активные элементы ГИМС. В ГИМС в качестве активных элементов применяют дискретные полупроводниковые приборы. Наибольшее распространение получили бескорпусные приборы, так как они имеют малые габариты и массу. На рис. 5 показана

конструкция бескорпусного биполярного транзистора с жесткими сферическими (шариковыми) выводами.

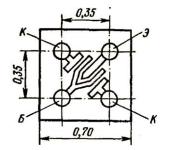
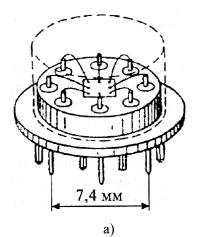


Рис. 5. Бескорпусный транзистор


Монтаж прибора с жесткими выводами производится методом «перевернутого кристалла», обеспечивающим непосредственное электрическое и механическое соединения

контактных площадок полупроводникового кристалла с соответствующими контактными площадками подложки. При этом монтаже кристалл оказывается обращенным лицевой поверхностью к подложке. Монтаж выполняется с помощью ультразвуковой, термокомпрессионной сварки или пайки. Для предотвращения воздействия внешних факторов кристаллы полупроводника в бескорпусных приборах покрывают специальными защитными покрытиями (лаки, эмали, смолы, компаунды и др.).

Большие интегральные схемы.

В настоящее время получили распространение большие интегральные схемы (БИС). Они содержат 1000 элементов и более. БИС выполняют функции узлов и электронных устройств. Поэтому в отличие от простых ПИМС и ГИМС они не обладают универсальностью, а рассчитаны на конкретное применение.

На рис. 6 показана общая технология формирования микросхемы (MC) на завершающем этапе независимо от технологий ее изготовления: гибридные тонкопленочные или толстопленочные; полупроводниковые (на кристаллах).

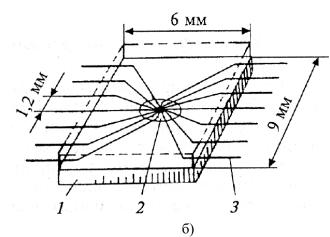


Рис. 6. Монтаж интегральных схем: а — в круглом корпусе; б — в плоском корпусе; 1 — керамика; 2 — контактные площадки; 3 — выводы